CLUS::BasicBinomialStatistics | |
CLUS::BinaryDecisionTree< T_Splitter > | Implements the binary decision tree |
CLUS::BinaryDecisionTreeNode< T_Splitter > | Implements a node of the binary decision tree |
CLUS::BinaryMultiClassificationSplitter | |
CLUS::BinaryObliqueProbabilisticSplitter | The class is completely redesigned as of May 27/2003 to incorporate fluctuations in splits not to use normal distributions to determine the probability functions |
CLUS::BinaryObliqueSplitter | |
CLUS::BinaryProbabilisticDecisionTree< T_Splitter > | |
CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter > | |
CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter > | |
CLUS::BinaryProbabilisticRegressionTreeNode< T_Distribution, T_Regressor, T_Splitter > | Class used in building regression trees |
CLUS::BinaryProbabilisticSplitter | |
CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter > | |
CLUS::BinaryRegressionTreeNode< T_Distribution, T_Regressor, T_Splitter > | Class used in building regression trees |
CLUS::BinarySplitter | Base class for all the splitters |
CLUS::BinomialStatistics | |
CLUS::Cluster | Cluster is the abstract base class for cluster hierarchy |
CLUS::ContinuousLinearTransformation | Applies linear shifts on continuous data |
CLUS::DataConsumer | |
CLUS::DataProducer | |
CLUS::DCTrainingData | Ancestor of all Training Data generators that can manipulate both discrete and continuous entries |
CLUS::DiscretePermutationTransformation | |
CLUS::Distribution | Base class for all the continuous distributions that have sufficient statistics |
CLUS::DynamicBuffer | Class to keep data temporarily that can grow automatically, only doubles can be stored inside |
elemList | |
CLUS::EMHiperPlan | |
CLUS::ErrMsg | |
CLUS::FileDataConsumer | |
CLUS::FileDataProducer | |
CLUS::Filter | |
CLUS::GridInputProducer | |
CLUS::HiperPlanCluster | This class implements hiperclusters with only one possible output |
CLUS::IndexedValue | |
CLUS::LinearRegressor | |
CLUS::Machine | Every machine has an input vector, an output one and a real output one should provide a constructor from file |
CLUS::MulticlassContinuousDistribution< T_Distribution > | The class is a repository of continuous sistributions that each predict one of the class labels of a discrete variable |
CLUS::MulticlassDistribution | Base class for all distributions that can predict a discrete variable |
CLUS::MultiDecisionTree< T_Splitter > | |
CLUS::MultiDecisionTreeNode< T_Splitter > | |
CLUS::MultiDimNormal | Implements a multidimentional normal distribution |
CLUS::MultidimNormalStatistics | Class implements a multidimentional normal distribution |
CLUS::NormalStatistics | |
CLUS::Permutation | Permutation[i] is the permuted value of i |
CLUS::ProbabilisticBinomialStatistics | |
CLUS::Regressor | |
CLUS::RPMSConsumer | |
CLUS::Scale | The following structure is used for scaling the inputs and the outputs newVal=adit+mult*oldVal |
CLUS::SimpleBinarySplitter | Splitter for decision trees |
CLUS::SimpleNormalDistribution | Implements a unidimensional normal distribution but the "active" dimension can be specified |
CLUS::SkinyMultiDimNormal | For now make EMHiperPlanCluster look like a Distribution |
CLUS::SphericCluster | Class that describes Spheric Clusters |
CLUS::StreamDataConsumer | |
CLUS::StreamDataProducer | |
CLUS::StreamDCTrainingData | |
CLUS::SyncObj | |
CLUS::SyncObjList | |
CLUS::SyncObjList::listel | |
CLUS::T_array | Auxiliary type |
CLUS::TrainingData | |