Main Page | Namespace List | Class Hierarchy | Data Structures | File List | Namespace Members | Data Fields | Globals | Related Pages

SECRET Data Structures

Here are the data structures with brief descriptions:
CLUS::BasicBinomialStatistics
CLUS::BinaryDecisionTree< T_Splitter >Implements the binary decision tree
CLUS::BinaryDecisionTreeNode< T_Splitter >Implements a node of the binary decision tree
CLUS::BinaryMultiClassificationSplitter
CLUS::BinaryObliqueProbabilisticSplitterThe class is completely redesigned as of May 27/2003 to incorporate fluctuations in splits not to use normal distributions to determine the probability functions
CLUS::BinaryObliqueSplitter
CLUS::BinaryProbabilisticDecisionTree< T_Splitter >
CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >
CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >
CLUS::BinaryProbabilisticRegressionTreeNode< T_Distribution, T_Regressor, T_Splitter >Class used in building regression trees
CLUS::BinaryProbabilisticSplitter
CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >
CLUS::BinaryRegressionTreeNode< T_Distribution, T_Regressor, T_Splitter >Class used in building regression trees
CLUS::BinarySplitterBase class for all the splitters
CLUS::BinomialStatistics
CLUS::ClusterCluster is the abstract base class for cluster hierarchy
CLUS::ContinuousLinearTransformationApplies linear shifts on continuous data
CLUS::DataConsumer
CLUS::DataProducer
CLUS::DCTrainingDataAncestor of all Training Data generators that can manipulate both discrete and continuous entries
CLUS::DiscretePermutationTransformation
CLUS::DistributionBase class for all the continuous distributions that have sufficient statistics
CLUS::DynamicBufferClass to keep data temporarily that can grow automatically, only doubles can be stored inside
elemList
CLUS::EMHiperPlan
CLUS::ErrMsg
CLUS::FileDataConsumer
CLUS::FileDataProducer
CLUS::Filter
CLUS::GridInputProducer
CLUS::HiperPlanClusterThis class implements hiperclusters with only one possible output
CLUS::IndexedValue
CLUS::LinearRegressor
CLUS::MachineEvery machine has an input vector, an output one and a real output one should provide a constructor from file
CLUS::MulticlassContinuousDistribution< T_Distribution >The class is a repository of continuous sistributions that each predict one of the class labels of a discrete variable
CLUS::MulticlassDistributionBase class for all distributions that can predict a discrete variable
CLUS::MultiDecisionTree< T_Splitter >
CLUS::MultiDecisionTreeNode< T_Splitter >
CLUS::MultiDimNormalImplements a multidimentional normal distribution
CLUS::MultidimNormalStatisticsClass implements a multidimentional normal distribution
CLUS::NormalStatistics
CLUS::PermutationPermutation[i] is the permuted value of i
CLUS::ProbabilisticBinomialStatistics
CLUS::Regressor
CLUS::RPMSConsumer
CLUS::ScaleThe following structure is used for scaling the inputs and the outputs newVal=adit+mult*oldVal
CLUS::SimpleBinarySplitterSplitter for decision trees
CLUS::SimpleNormalDistributionImplements a unidimensional normal distribution but the "active" dimension can be specified
CLUS::SkinyMultiDimNormalFor now make EMHiperPlanCluster look like a Distribution
CLUS::SphericClusterClass that describes Spheric Clusters
CLUS::StreamDataConsumer
CLUS::StreamDataProducer
CLUS::StreamDCTrainingData
CLUS::SyncObj
CLUS::SyncObjList
CLUS::SyncObjList::listel
CLUS::T_arrayAuxiliary type
CLUS::TrainingData

Generated on Mon Jul 21 16:57:43 2003 for SECRET by doxygen 1.3.2