#include <binaryprobabilisticdecisiontreenode.h>
Collaboration diagram for CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >:

Public Member Functions | |
| BinaryProbabilisticDecisionTreeNode (int NodeId, const Vector< int > &DDomainSize, int CsplitDim) | |
| ~BinaryProbabilisticDecisionTreeNode (void) | |
| void | StartLearningEpoch (void) |
| void | LearnSample (const int *Dvars, const double *Cvars, int classlabel, double probability, double threshold) |
| bool | StopLearningEpoch (double minMass) |
| double | ProbabilityFirstClass (const int *Dvars, const double *Cvars, double probability, double threshold) |
| Use Baesian decision mode. | |
| void | InitializePruningStatistics (void) |
| void | UpdatePruningStatistics (const int *Dvars, const double *Cvars, int classlabel, double probability, double threshold) |
| void | FinalizePruningStatistics (void) |
| double | PruneSubtree (void) |
| Returns the optimal cost for this subtree and cuts the subtree to optimal size. | |
| void | SaveToStream (ostream &out) |
Protected Types | |
| enum | state { stable, split, bootstrap } |
| the state of the node. At creation em. At load stable More... | |
Protected Attributes | |
| int | nodeId |
| unique identifier of the cluster for a regression tree | |
| enum CLUS::BinaryProbabilisticDecisionTreeNode::state | State |
| the state of the node. At creation em. At load stable | |
| BinaryProbabilisticDecisionTreeNode< T_Splitter > * | Children [2] |
| the children of this node | |
| double | probFirstClass |
| the probability to return first class, for the second probability is 1-probFirstClass | |
| T_Splitter | Splitter |
| Splitter for split criterion. | |
| double | pruningError |
| pruning statistics. Their ratio is the error | |
| double | pruningTotalMass |
| pruning statistics. Their ratio is the error | |
| double | pruningTotalMassLeft |
| pruning statistics. Their ratio is the error | |
|
|||||
|
the state of the node. At creation em. At load stable
Definition at line 58 of file binaryprobabilisticdecisiontreenode.h. |
|
||||||||||||||||||||
|
Definition at line 73 of file binaryprobabilisticdecisiontreenode.h. |
|
||||||||||
|
Definition at line 80 of file binaryprobabilisticdecisiontreenode.h. |
|
||||||||||
|
Definition at line 284 of file binaryprobabilisticdecisiontreenode.h. |
|
||||||||||
|
Definition at line 230 of file binaryprobabilisticdecisiontreenode.h. |
|
||||||||||||||||||||||||||||
|
Definition at line 116 of file binaryprobabilisticdecisiontreenode.h. |
|
||||||||||||||||||||||||
|
Use Baesian decision mode.
Definition at line 202 of file binaryprobabilisticdecisiontreenode.h. |
|
||||||||||
|
Returns the optimal cost for this subtree and cuts the subtree to optimal size.
Definition at line 290 of file binaryprobabilisticdecisiontreenode.h. |
|
||||||||||
|
Definition at line 341 of file binaryprobabilisticdecisiontreenode.h. |
|
||||||||||
|
Definition at line 92 of file binaryprobabilisticdecisiontreenode.h. |
|
||||||||||
|
Definition at line 147 of file binaryprobabilisticdecisiontreenode.h. |
|
||||||||||||||||||||||||||||
|
Definition at line 242 of file binaryprobabilisticdecisiontreenode.h. |
|
|||||
|
|||||
|
unique identifier of the cluster for a regression tree
Definition at line 55 of file binaryprobabilisticdecisiontreenode.h. Referenced by CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::BinaryProbabilisticDecisionTreeNode(), CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::PruneSubtree(), CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::SaveToStream(), and CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::StopLearningEpoch(). |
|
|||||
|
the probability to return first class, for the second probability is 1-probFirstClass
Definition at line 64 of file binaryprobabilisticdecisiontreenode.h. Referenced by CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::BinaryProbabilisticDecisionTreeNode(), CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::ProbabilityFirstClass(), CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::SaveToStream(), CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::StopLearningEpoch(), and CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
|||||
|
pruning statistics. Their ratio is the error
Definition at line 70 of file binaryprobabilisticdecisiontreenode.h. Referenced by CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::InitializePruningStatistics(), CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::PruneSubtree(), and CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
|||||
|
pruning statistics. Their ratio is the error
Definition at line 70 of file binaryprobabilisticdecisiontreenode.h. Referenced by CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::InitializePruningStatistics(), CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::PruneSubtree(), and CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
|||||
|
pruning statistics. Their ratio is the error
Definition at line 70 of file binaryprobabilisticdecisiontreenode.h. Referenced by CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::InitializePruningStatistics(), and CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
|||||
|
|||||
1.3.2