#include <binaryprobabilisticdecisiontreenode.h>
Collaboration diagram for CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >:
Public Member Functions | |
BinaryProbabilisticDecisionTreeNode (int NodeId, const Vector< int > &DDomainSize, int CsplitDim) | |
~BinaryProbabilisticDecisionTreeNode (void) | |
void | StartLearningEpoch (void) |
void | LearnSample (const int *Dvars, const double *Cvars, int classlabel, double probability, double threshold) |
bool | StopLearningEpoch (double minMass) |
double | ProbabilityFirstClass (const int *Dvars, const double *Cvars, double probability, double threshold) |
Use Baesian decision mode. | |
void | InitializePruningStatistics (void) |
void | UpdatePruningStatistics (const int *Dvars, const double *Cvars, int classlabel, double probability, double threshold) |
void | FinalizePruningStatistics (void) |
double | PruneSubtree (void) |
Returns the optimal cost for this subtree and cuts the subtree to optimal size. | |
void | SaveToStream (ostream &out) |
Protected Types | |
enum | state { stable, split, bootstrap } |
the state of the node. At creation em. At load stable More... | |
Protected Attributes | |
int | nodeId |
unique identifier of the cluster for a regression tree | |
enum CLUS::BinaryProbabilisticDecisionTreeNode::state | State |
the state of the node. At creation em. At load stable | |
BinaryProbabilisticDecisionTreeNode< T_Splitter > * | Children [2] |
the children of this node | |
double | probFirstClass |
the probability to return first class, for the second probability is 1-probFirstClass | |
T_Splitter | Splitter |
Splitter for split criterion. | |
double | pruningError |
pruning statistics. Their ratio is the error | |
double | pruningTotalMass |
pruning statistics. Their ratio is the error | |
double | pruningTotalMassLeft |
pruning statistics. Their ratio is the error |
|
the state of the node. At creation em. At load stable
Definition at line 58 of file binaryprobabilisticdecisiontreenode.h. |
|
Definition at line 73 of file binaryprobabilisticdecisiontreenode.h. |
|
Definition at line 80 of file binaryprobabilisticdecisiontreenode.h. |
|
Definition at line 284 of file binaryprobabilisticdecisiontreenode.h. |
|
Definition at line 230 of file binaryprobabilisticdecisiontreenode.h. |
|
Definition at line 116 of file binaryprobabilisticdecisiontreenode.h. |
|
Use Baesian decision mode.
Definition at line 202 of file binaryprobabilisticdecisiontreenode.h. |
|
Returns the optimal cost for this subtree and cuts the subtree to optimal size.
Definition at line 290 of file binaryprobabilisticdecisiontreenode.h. |
|
Definition at line 341 of file binaryprobabilisticdecisiontreenode.h. |
|
Definition at line 92 of file binaryprobabilisticdecisiontreenode.h. |
|
Definition at line 147 of file binaryprobabilisticdecisiontreenode.h. |
|
Definition at line 242 of file binaryprobabilisticdecisiontreenode.h. |
|
|
unique identifier of the cluster for a regression tree
Definition at line 55 of file binaryprobabilisticdecisiontreenode.h. Referenced by CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::BinaryProbabilisticDecisionTreeNode(), CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::PruneSubtree(), CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::SaveToStream(), and CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::StopLearningEpoch(). |
|
the probability to return first class, for the second probability is 1-probFirstClass
Definition at line 64 of file binaryprobabilisticdecisiontreenode.h. Referenced by CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::BinaryProbabilisticDecisionTreeNode(), CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::ProbabilityFirstClass(), CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::SaveToStream(), CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::StopLearningEpoch(), and CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
pruning statistics. Their ratio is the error
Definition at line 70 of file binaryprobabilisticdecisiontreenode.h. Referenced by CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::InitializePruningStatistics(), CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::PruneSubtree(), and CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
pruning statistics. Their ratio is the error
Definition at line 70 of file binaryprobabilisticdecisiontreenode.h. Referenced by CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::InitializePruningStatistics(), CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::PruneSubtree(), and CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
pruning statistics. Their ratio is the error
Definition at line 70 of file binaryprobabilisticdecisiontreenode.h. Referenced by CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::InitializePruningStatistics(), and CLUS::BinaryProbabilisticDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
|