#include <binarydecisiontreenode.h>
Collaboration diagram for CLUS::BinaryDecisionTreeNode< T_Splitter >:

Public Member Functions | |
| BinaryDecisionTreeNode (int NodeId, const Vector< int > &DDomainSize, int CsplitDim) | |
| ~BinaryDecisionTreeNode (void) | |
| void | StartLearningEpoch (void) |
| Begin the learning process. | |
| void | LearnSample (const int *Dvars, const double *Cvars, int classlabel) |
| Learn a data sample. | |
| bool | StopLearningEpoch (int minMass) |
| Stop the learning process. | |
| double | Infer (const int *Dvars, const double *Cvars) |
| Do the inference. | |
| void | InitializePruningStatistics (void) |
| Initialize stats about pruning. | |
| void | UpdatePruningStatistics (const int *Dvars, const double *Cvars, int classlabel) |
| Update pruning stats with new data. | |
| void | FinalizePruningStatistics (void) |
| double | PruneSubtree (void) |
| Return the optimal cost for this subtree and cuts the subtree to optimal size. | |
| void | SaveToStream (ostream &out) |
| Output the node data to a stream. | |
Protected Types | |
| enum | state { stable, split } |
| the state of the node. At creation em. At load stable More... | |
Protected Attributes | |
| int | nodeId |
| unique identifier of the cluster for a regression tree. | |
| enum CLUS::BinaryDecisionTreeNode::state | State |
| the state of the node. At creation em. At load stable | |
| int | classLabel |
| the predicted class label | |
| BinaryDecisionTreeNode< T_Splitter > * | Children [2] |
| the children of this node | |
| double | probFirstClass |
| the probability to return first class, for the seccond probability is 1-probFirstClass | |
| T_Splitter | Splitter |
| splitter for split criterion | |
| int | pruningError |
| pruning error statistic | |
| int | pruningTotalMass |
| pruning total mass statistic | |
Definition at line 52 of file binarydecisiontreenode.h.
|
|||||
|
the state of the node. At creation em. At load stable
Definition at line 60 of file binarydecisiontreenode.h. |
|
||||||||||||||||||||
|
Definition at line 81 of file binarydecisiontreenode.h. |
|
||||||||||
|
Definition at line 89 of file binarydecisiontreenode.h. |
|
||||||||||
|
Definition at line 255 of file binarydecisiontreenode.h. |
|
||||||||||||||||
|
Do the inference.
Definition at line 207 of file binarydecisiontreenode.h. |
|
||||||||||
|
Initialize stats about pruning.
Definition at line 222 of file binarydecisiontreenode.h. |
|
||||||||||||||||||||
|
Learn a data sample.
Definition at line 124 of file binarydecisiontreenode.h. |
|
||||||||||
|
Return the optimal cost for this subtree and cuts the subtree to optimal size.
Definition at line 261 of file binarydecisiontreenode.h. |
|
||||||||||
|
Output the node data to a stream.
Definition at line 307 of file binarydecisiontreenode.h. |
|
||||||||||
|
Begin the learning process.
Definition at line 102 of file binarydecisiontreenode.h. |
|
||||||||||
|
Stop the learning process.
Definition at line 149 of file binarydecisiontreenode.h. |
|
||||||||||||||||||||
|
Update pruning stats with new data.
Definition at line 239 of file binarydecisiontreenode.h. |
|
|||||
|
|||||
|
the predicted class label
Definition at line 63 of file binarydecisiontreenode.h. Referenced by CLUS::BinaryDecisionTreeNode< T_Splitter >::Infer(), CLUS::BinaryDecisionTreeNode< T_Splitter >::SaveToStream(), CLUS::BinaryDecisionTreeNode< T_Splitter >::StopLearningEpoch(), and CLUS::BinaryDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
|||||
|
unique identifier of the cluster for a regression tree.
Definition at line 57 of file binarydecisiontreenode.h. Referenced by CLUS::BinaryDecisionTreeNode< T_Splitter >::BinaryDecisionTreeNode(), CLUS::BinaryDecisionTreeNode< T_Splitter >::PruneSubtree(), CLUS::BinaryDecisionTreeNode< T_Splitter >::SaveToStream(), and CLUS::BinaryDecisionTreeNode< T_Splitter >::StopLearningEpoch(). |
|
|||||
|
the probability to return first class, for the seccond probability is 1-probFirstClass
Definition at line 69 of file binarydecisiontreenode.h. Referenced by CLUS::BinaryDecisionTreeNode< T_Splitter >::BinaryDecisionTreeNode(), and CLUS::BinaryDecisionTreeNode< T_Splitter >::StopLearningEpoch(). |
|
|||||
|
pruning error statistic
Definition at line 75 of file binarydecisiontreenode.h. Referenced by CLUS::BinaryDecisionTreeNode< T_Splitter >::InitializePruningStatistics(), CLUS::BinaryDecisionTreeNode< T_Splitter >::PruneSubtree(), and CLUS::BinaryDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
|||||
|
pruning total mass statistic
Definition at line 78 of file binarydecisiontreenode.h. Referenced by CLUS::BinaryDecisionTreeNode< T_Splitter >::InitializePruningStatistics(), CLUS::BinaryDecisionTreeNode< T_Splitter >::PruneSubtree(), and CLUS::BinaryDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
|||||
|
|||||
|
the state of the node. At creation em. At load stable
Referenced by CLUS::BinaryDecisionTreeNode< T_Splitter >::BinaryDecisionTreeNode(), CLUS::BinaryDecisionTreeNode< T_Splitter >::LearnSample(), CLUS::BinaryDecisionTreeNode< T_Splitter >::StartLearningEpoch(), and CLUS::BinaryDecisionTreeNode< T_Splitter >::StopLearningEpoch(). |
1.3.2