#include <binarydecisiontreenode.h>
Collaboration diagram for CLUS::BinaryDecisionTreeNode< T_Splitter >:
Public Member Functions | |
BinaryDecisionTreeNode (int NodeId, const Vector< int > &DDomainSize, int CsplitDim) | |
~BinaryDecisionTreeNode (void) | |
void | StartLearningEpoch (void) |
Begin the learning process. | |
void | LearnSample (const int *Dvars, const double *Cvars, int classlabel) |
Learn a data sample. | |
bool | StopLearningEpoch (int minMass) |
Stop the learning process. | |
double | Infer (const int *Dvars, const double *Cvars) |
Do the inference. | |
void | InitializePruningStatistics (void) |
Initialize stats about pruning. | |
void | UpdatePruningStatistics (const int *Dvars, const double *Cvars, int classlabel) |
Update pruning stats with new data. | |
void | FinalizePruningStatistics (void) |
double | PruneSubtree (void) |
Return the optimal cost for this subtree and cuts the subtree to optimal size. | |
void | SaveToStream (ostream &out) |
Output the node data to a stream. | |
Protected Types | |
enum | state { stable, split } |
the state of the node. At creation em. At load stable More... | |
Protected Attributes | |
int | nodeId |
unique identifier of the cluster for a regression tree. | |
enum CLUS::BinaryDecisionTreeNode::state | State |
the state of the node. At creation em. At load stable | |
int | classLabel |
the predicted class label | |
BinaryDecisionTreeNode< T_Splitter > * | Children [2] |
the children of this node | |
double | probFirstClass |
the probability to return first class, for the seccond probability is 1-probFirstClass | |
T_Splitter | Splitter |
splitter for split criterion | |
int | pruningError |
pruning error statistic | |
int | pruningTotalMass |
pruning total mass statistic |
Definition at line 52 of file binarydecisiontreenode.h.
|
the state of the node. At creation em. At load stable
Definition at line 60 of file binarydecisiontreenode.h. |
|
Definition at line 81 of file binarydecisiontreenode.h. |
|
Definition at line 89 of file binarydecisiontreenode.h. |
|
Definition at line 255 of file binarydecisiontreenode.h. |
|
Do the inference.
Definition at line 207 of file binarydecisiontreenode.h. |
|
Initialize stats about pruning.
Definition at line 222 of file binarydecisiontreenode.h. |
|
Learn a data sample.
Definition at line 124 of file binarydecisiontreenode.h. |
|
Return the optimal cost for this subtree and cuts the subtree to optimal size.
Definition at line 261 of file binarydecisiontreenode.h. |
|
Output the node data to a stream.
Definition at line 307 of file binarydecisiontreenode.h. |
|
Begin the learning process.
Definition at line 102 of file binarydecisiontreenode.h. |
|
Stop the learning process.
Definition at line 149 of file binarydecisiontreenode.h. |
|
Update pruning stats with new data.
Definition at line 239 of file binarydecisiontreenode.h. |
|
|
the predicted class label
Definition at line 63 of file binarydecisiontreenode.h. Referenced by CLUS::BinaryDecisionTreeNode< T_Splitter >::Infer(), CLUS::BinaryDecisionTreeNode< T_Splitter >::SaveToStream(), CLUS::BinaryDecisionTreeNode< T_Splitter >::StopLearningEpoch(), and CLUS::BinaryDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
unique identifier of the cluster for a regression tree.
Definition at line 57 of file binarydecisiontreenode.h. Referenced by CLUS::BinaryDecisionTreeNode< T_Splitter >::BinaryDecisionTreeNode(), CLUS::BinaryDecisionTreeNode< T_Splitter >::PruneSubtree(), CLUS::BinaryDecisionTreeNode< T_Splitter >::SaveToStream(), and CLUS::BinaryDecisionTreeNode< T_Splitter >::StopLearningEpoch(). |
|
the probability to return first class, for the seccond probability is 1-probFirstClass
Definition at line 69 of file binarydecisiontreenode.h. Referenced by CLUS::BinaryDecisionTreeNode< T_Splitter >::BinaryDecisionTreeNode(), and CLUS::BinaryDecisionTreeNode< T_Splitter >::StopLearningEpoch(). |
|
pruning error statistic
Definition at line 75 of file binarydecisiontreenode.h. Referenced by CLUS::BinaryDecisionTreeNode< T_Splitter >::InitializePruningStatistics(), CLUS::BinaryDecisionTreeNode< T_Splitter >::PruneSubtree(), and CLUS::BinaryDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
pruning total mass statistic
Definition at line 78 of file binarydecisiontreenode.h. Referenced by CLUS::BinaryDecisionTreeNode< T_Splitter >::InitializePruningStatistics(), CLUS::BinaryDecisionTreeNode< T_Splitter >::PruneSubtree(), and CLUS::BinaryDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
|
the state of the node. At creation em. At load stable
Referenced by CLUS::BinaryDecisionTreeNode< T_Splitter >::BinaryDecisionTreeNode(), CLUS::BinaryDecisionTreeNode< T_Splitter >::LearnSample(), CLUS::BinaryDecisionTreeNode< T_Splitter >::StartLearningEpoch(), and CLUS::BinaryDecisionTreeNode< T_Splitter >::StopLearningEpoch(). |