Main Page | Namespace List | Class Hierarchy | Data Structures | File List | Namespace Members | Data Fields | Globals | Related Pages

CLUS::Machine Class Reference

Every machine has an input vector, an output one and a real output one should provide a constructor from file. More...

#include <machine.h>

Inheritance diagram for CLUS::Machine:

Inheritance graph
[legend]
Collaboration diagram for CLUS::Machine:

Collaboration graph
[legend]

Public Member Functions

 Machine ()
 Machine (Subscript InDim, Subscript OutDim, Vector< double > *Input=NULL)
virtual int InDim (void)
 Get the number of input dimensions.

int OutDim (void)
 Get the number of output dimensions.

virtual void Infer (void)
 Do the inference.

virtual bool Tick (void)
 Process more data for the epoch.

virtual void Identify (void)
 Use the training data to learn a new structure.

virtual void Prune (void)
 Prune the structure.

virtual double FindBestParameter (char *name)
void SetTrainingData (TrainingData *Training)
 Set the training data for this machine.

void SetPruningData (TrainingData *Pruning)
 Set the pruning data for this machine.

void ScaleData (Scale::NormType type)
 Scale the training data.

const Vector< Scale > & GetScaleFactors (void) const
virtual void GenerateStructure (string Type)
void SaveToFile (char *filename)
 Output the structure data to a file.

virtual void SaveToStream (ostream &out)
 Output the structure data to a stream.

virtual string TypeName (void)
 Get the type of this object.

virtual bool SetOptionOnComponents (char *optName, double value)
virtual int SetOption (char *name, char *val)
 Set an option for the machine.


Protected Member Functions

virtual double IdentifyStep (int iter)

Protected Attributes

Subscript maxIter
double convergenceLim
double Criterion
Vector< Scalescale
TrainingDatatraining
TrainingDatapruning
char * savePattern
char * saveInferPattern
int inDim
int outDim
int N
 number of subparts


Detailed Description

Every machine has an input vector, an output one and a real output one should provide a constructor from file.

A constructor of the form Cons(int nrpar, int* pararray) and one of the form Cons(FILE* filename, int inDim, int outDim)

Definition at line 73 of file machine.h.


Constructor & Destructor Documentation

CLUS::Machine::Machine  )  [inline]
 

Definition at line 93 of file machine.h.

CLUS::Machine::Machine Subscript  InDim,
Subscript  OutDim,
Vector< double > *  Input = NULL
[inline]
 

Definition at line 97 of file machine.h.


Member Function Documentation

virtual double CLUS::Machine::FindBestParameter char *  name  )  [inline, virtual]
 

Deprecated:

Definition at line 169 of file machine.h.

virtual void CLUS::Machine::GenerateStructure string  Type  )  [inline, virtual]
 

Deprecated:

Definition at line 208 of file machine.h.

const Vector<Scale>& CLUS::Machine::GetScaleFactors void   )  const [inline]
 

Definition at line 202 of file machine.h.

virtual void CLUS::Machine::Identify void   )  [inline, virtual]
 

Use the training data to learn a new structure.

Reimplemented in CLUS::BinaryDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticDecisionTree< T_Splitter >, CLUS::MultiDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >, and CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >.

Definition at line 131 of file machine.h.

virtual double CLUS::Machine::IdentifyStep int  iter  )  [inline, protected, virtual]
 

Definition at line 88 of file machine.h.

virtual int CLUS::Machine::InDim void   )  [inline, virtual]
 

Get the number of input dimensions.

Reimplemented in CLUS::BinaryDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticDecisionTree< T_Splitter >, CLUS::MultiDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >, and CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >.

Definition at line 107 of file machine.h.

virtual void CLUS::Machine::Infer void   )  [inline, virtual]
 

Do the inference.

Reimplemented in CLUS::BinaryDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticDecisionTree< T_Splitter >, CLUS::MultiDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >, and CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >.

Definition at line 119 of file machine.h.

Referenced by Tick().

int CLUS::Machine::OutDim void   )  [inline]
 

Get the number of output dimensions.

Definition at line 113 of file machine.h.

virtual void CLUS::Machine::Prune void   )  [inline, virtual]
 

Prune the structure.

Reimplemented in CLUS::BinaryDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticDecisionTree< T_Splitter >, CLUS::MultiDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >, and CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >.

Definition at line 165 of file machine.h.

void CLUS::Machine::SaveToFile char *  filename  )  [inline]
 

Output the structure data to a file.

Parameters:
filename name of save file

Definition at line 214 of file machine.h.

Referenced by Identify().

virtual void CLUS::Machine::SaveToStream ostream &  out  )  [inline, virtual]
 

Output the structure data to a stream.

Parameters:
out stream for output

Reimplemented in CLUS::BinaryDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticDecisionTree< T_Splitter >, CLUS::MultiDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >, and CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >.

Definition at line 223 of file machine.h.

Referenced by SaveToFile().

void CLUS::Machine::ScaleData Scale::NormType  type  )  [inline]
 

Scale the training data.

Parameters:
type interval or distribution

Definition at line 193 of file machine.h.

virtual int CLUS::Machine::SetOption char *  name,
char *  val
[inline, virtual]
 

Set an option for the machine.

Parameters:
name name of option to be set
val value of option

Reimplemented in CLUS::BinaryDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticDecisionTree< T_Splitter >, CLUS::MultiDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >, and CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >.

Definition at line 267 of file machine.h.

virtual bool CLUS::Machine::SetOptionOnComponents char *  optName,
double  value
[inline, virtual]
 

Deprecated:

Definition at line 258 of file machine.h.

void CLUS::Machine::SetPruningData TrainingData Pruning  )  [inline]
 

Set the pruning data for this machine.

Parameters:
Pruning 

Definition at line 185 of file machine.h.

void CLUS::Machine::SetTrainingData TrainingData Training  )  [inline]
 

Set the training data for this machine.

Parameters:
Training 

Definition at line 177 of file machine.h.

virtual bool CLUS::Machine::Tick void   )  [inline, virtual]
 

Process more data for the epoch.

Reimplemented from CLUS::Filter.

Definition at line 124 of file machine.h.

virtual string CLUS::Machine::TypeName void   )  [inline, virtual]
 

Get the type of this object.

Returns:
name of object type as a string

Reimplemented in CLUS::BinaryDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticDecisionTree< T_Splitter >, CLUS::MultiDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >, and CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >.

Definition at line 252 of file machine.h.


Field Documentation

double CLUS::Machine::convergenceLim [protected]
 

Definition at line 77 of file machine.h.

Referenced by CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Identify(), CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Identify(), Identify(), Machine(), and SetOption().

double CLUS::Machine::Criterion [protected]
 

Definition at line 77 of file machine.h.

Referenced by Identify().

int CLUS::Machine::inDim [protected]
 

Definition at line 83 of file machine.h.

Referenced by InDim(), Machine(), and ScaleData().

Subscript CLUS::Machine::maxIter [protected]
 

Definition at line 76 of file machine.h.

Referenced by Identify(), Machine(), and SetOption().

int CLUS::Machine::N [protected]
 

number of subparts

Definition at line 86 of file machine.h.

Referenced by Identify().

int CLUS::Machine::outDim [protected]
 

Definition at line 83 of file machine.h.

Referenced by Machine(), and OutDim().

TrainingData* CLUS::Machine::pruning [protected]
 

Definition at line 80 of file machine.h.

Referenced by CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Prune(), CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Prune(), CLUS::MultiDecisionTree< T_Splitter >::Prune(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Prune(), CLUS::BinaryDecisionTree< T_Splitter >::Prune(), and SetPruningData().

char* CLUS::Machine::saveInferPattern [protected]
 

Definition at line 82 of file machine.h.

Referenced by Machine(), and SetOption().

char* CLUS::Machine::savePattern [protected]
 

Definition at line 81 of file machine.h.

Referenced by Identify(), Machine(), and SetOption().

Vector<Scale> CLUS::Machine::scale [protected]
 

Definition at line 78 of file machine.h.

Referenced by GetScaleFactors(), CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Infer(), CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Infer(), Machine(), CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Prune(), CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Prune(), CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >::SaveToStream(), CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::SaveToStream(), and ScaleData().

TrainingData* CLUS::Machine::training [protected]
 

Definition at line 79 of file machine.h.

Referenced by CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Identify(), CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Identify(), CLUS::MultiDecisionTree< T_Splitter >::Identify(), Identify(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Identify(), CLUS::BinaryDecisionTree< T_Splitter >::Identify(), ScaleData(), and SetTrainingData().


The documentation for this class was generated from the following file:
Generated on Mon Jul 21 16:57:49 2003 for SECRET by doxygen 1.3.2