#include <machine.h>
Inheritance diagram for CLUS::Machine:
Public Member Functions | |
Machine () | |
Machine (Subscript InDim, Subscript OutDim, Vector< double > *Input=NULL) | |
virtual int | InDim (void) |
Get the number of input dimensions. | |
int | OutDim (void) |
Get the number of output dimensions. | |
virtual void | Infer (void) |
Do the inference. | |
virtual bool | Tick (void) |
Process more data for the epoch. | |
virtual void | Identify (void) |
Use the training data to learn a new structure. | |
virtual void | Prune (void) |
Prune the structure. | |
virtual double | FindBestParameter (char *name) |
void | SetTrainingData (TrainingData *Training) |
Set the training data for this machine. | |
void | SetPruningData (TrainingData *Pruning) |
Set the pruning data for this machine. | |
void | ScaleData (Scale::NormType type) |
Scale the training data. | |
const Vector< Scale > & | GetScaleFactors (void) const |
virtual void | GenerateStructure (string Type) |
void | SaveToFile (char *filename) |
Output the structure data to a file. | |
virtual void | SaveToStream (ostream &out) |
Output the structure data to a stream. | |
virtual string | TypeName (void) |
Get the type of this object. | |
virtual bool | SetOptionOnComponents (char *optName, double value) |
virtual int | SetOption (char *name, char *val) |
Set an option for the machine. | |
Protected Member Functions | |
virtual double | IdentifyStep (int iter) |
Protected Attributes | |
Subscript | maxIter |
double | convergenceLim |
double | Criterion |
Vector< Scale > | scale |
TrainingData * | training |
TrainingData * | pruning |
char * | savePattern |
char * | saveInferPattern |
int | inDim |
int | outDim |
int | N |
number of subparts |
A constructor of the form Cons(int nrpar, int* pararray) and one of the form Cons(FILE* filename, int inDim, int outDim)
Definition at line 73 of file machine.h.
|
|
|
|
|
|
|
|
|
|
|
Use the training data to learn a new structure.
Reimplemented in CLUS::BinaryDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticDecisionTree< T_Splitter >, CLUS::MultiDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >, and CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >. |
|
|
|
|
Do the inference.
Reimplemented in CLUS::BinaryDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticDecisionTree< T_Splitter >, CLUS::MultiDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >, and CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >. Definition at line 119 of file machine.h. Referenced by Tick(). |
|
Get the number of output dimensions.
|
|
|
Output the structure data to a file.
Definition at line 214 of file machine.h. Referenced by Identify(). |
|
Output the structure data to a stream.
Reimplemented in CLUS::BinaryDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticDecisionTree< T_Splitter >, CLUS::MultiDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >, and CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >. Definition at line 223 of file machine.h. Referenced by SaveToFile(). |
|
Scale the training data.
|
|
Set an option for the machine.
Reimplemented in CLUS::BinaryDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticDecisionTree< T_Splitter >, CLUS::MultiDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >, and CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >. |
|
|
|
Set the pruning data for this machine.
|
|
Set the training data for this machine.
|
|
Process more data for the epoch.
Reimplemented from CLUS::Filter. |
|
Get the type of this object.
Reimplemented in CLUS::BinaryDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticDecisionTree< T_Splitter >, CLUS::MultiDecisionTree< T_Splitter >, CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >, and CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >. |
|
Definition at line 77 of file machine.h. Referenced by CLUS::BinaryRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Identify(), CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Identify(), Identify(), Machine(), and SetOption(). |
|
Definition at line 77 of file machine.h. Referenced by Identify(). |
|
Definition at line 83 of file machine.h. Referenced by InDim(), Machine(), and ScaleData(). |
|
Definition at line 76 of file machine.h. Referenced by Identify(), Machine(), and SetOption(). |
|
number of subparts
Definition at line 86 of file machine.h. Referenced by Identify(). |
|
|
|
|
Definition at line 82 of file machine.h. Referenced by Machine(), and SetOption(). |
|
Definition at line 81 of file machine.h. Referenced by Identify(), Machine(), and SetOption(). |
|
|