#include <probabilisticregressiontree.h>
Inheritance diagram for CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >:
Public Member Functions | |
BinaryProbabilisticRegressionTree (const Vector< int > &DDomainSize, int CsplitDim, int RegDim) | |
virtual | ~BinaryProbabilisticRegressionTree (void) |
virtual int | InDim (void) |
Get the number of input dimensions. | |
virtual string | TypeName (void) |
Get the type of this object. | |
virtual void | Infer (void) |
Do the inference. | |
virtual void | Identify (void) |
Use the training data to learn a new structure. | |
virtual void | Prune (void) |
Prune the structure. | |
virtual int | SetOption (char *name, char *val) |
Set an option for the machine. | |
virtual void | SaveToStream (ostream &out) |
Output the structure data to a stream. | |
Protected Member Functions | |
void | PrintSizesTree (void) |
Protected Attributes | |
BinaryProbabilisticRegressionTreeNode< T_Distribution, T_Regressor, T_Splitter > * | root |
const Vector< int > & | dDomainSize |
list of discrete domain sizes | |
int | dsplitDim |
num of discrete variables | |
int | csplitDim |
num of continuous+split variables | |
int | regDim |
num of regression variables | |
int | emMaxIterations |
num of iterations to get convergence for EM | |
int | emRestarts |
num of restarts of EM to get a good initial starting point | |
int | min_no_datapoints |
the minimum number of datapoints in a node to split further | |
int | splitType |
type of split to be passed to splitter, splitter dependent | |
T_Distribution * | rootDistribution |
int | inferMaxNodeId |
|
Definition at line 89 of file probabilisticregressiontree.h. |
|
Definition at line 101 of file probabilisticregressiontree.h. |
|
Use the training data to learn a new structure.
Reimplemented from CLUS::Machine. Definition at line 136 of file probabilisticregressiontree.h. |
|
Get the number of input dimensions.
Reimplemented from CLUS::Machine. Definition at line 107 of file probabilisticregressiontree.h. |
|
Do the inference.
Reimplemented from CLUS::Machine. Definition at line 117 of file probabilisticregressiontree.h. |
|
|
Prune the structure.
Reimplemented from CLUS::Machine. Definition at line 182 of file probabilisticregressiontree.h. |
|
Output the structure data to a stream.
Reimplemented from CLUS::Machine. Definition at line 231 of file probabilisticregressiontree.h. |
|
Set an option for the machine.
Reimplemented from CLUS::Machine. Definition at line 210 of file probabilisticregressiontree.h. |
|
Get the type of this object.
Reimplemented from CLUS::Machine. Definition at line 112 of file probabilisticregressiontree.h. Referenced by CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::SaveToStream(). |
|
|
|
|
num of iterations to get convergence for EM
Definition at line 66 of file probabilisticregressiontree.h. Referenced by CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::BinaryProbabilisticRegressionTree(), CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Identify(), and CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::SetOption(). |
|
num of restarts of EM to get a good initial starting point
Definition at line 69 of file probabilisticregressiontree.h. Referenced by CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::BinaryProbabilisticRegressionTree(), CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Identify(), and CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::SetOption(). |
|
|
the minimum number of datapoints in a node to split further
Definition at line 72 of file probabilisticregressiontree.h. Referenced by CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::BinaryProbabilisticRegressionTree(), CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Identify(), and CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::SetOption(). |
|
|
|
|
type of split to be passed to splitter, splitter dependent
Definition at line 75 of file probabilisticregressiontree.h. Referenced by CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::BinaryProbabilisticRegressionTree(), CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Identify(), and CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::SetOption(). |