#include <probabilisticregressiontree.h>
Inheritance diagram for CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >:


| Public Member Functions | |
| BinaryProbabilisticRegressionTree (const Vector< int > &DDomainSize, int CsplitDim, int RegDim) | |
| virtual | ~BinaryProbabilisticRegressionTree (void) | 
| virtual int | InDim (void) | 
| Get the number of input dimensions. | |
| virtual string | TypeName (void) | 
| Get the type of this object. | |
| virtual void | Infer (void) | 
| Do the inference. | |
| virtual void | Identify (void) | 
| Use the training data to learn a new structure. | |
| virtual void | Prune (void) | 
| Prune the structure. | |
| virtual int | SetOption (char *name, char *val) | 
| Set an option for the machine. | |
| virtual void | SaveToStream (ostream &out) | 
| Output the structure data to a stream. | |
| Protected Member Functions | |
| void | PrintSizesTree (void) | 
| Protected Attributes | |
| BinaryProbabilisticRegressionTreeNode< T_Distribution, T_Regressor, T_Splitter > * | root | 
| const Vector< int > & | dDomainSize | 
| list of discrete domain sizes | |
| int | dsplitDim | 
| num of discrete variables | |
| int | csplitDim | 
| num of continuous+split variables | |
| int | regDim | 
| num of regression variables | |
| int | emMaxIterations | 
| num of iterations to get convergence for EM | |
| int | emRestarts | 
| num of restarts of EM to get a good initial starting point | |
| int | min_no_datapoints | 
| the minimum number of datapoints in a node to split further | |
| int | splitType | 
| type of split to be passed to splitter, splitter dependent | |
| T_Distribution * | rootDistribution | 
| int | inferMaxNodeId | 
| 
 | ||||||||||||||||||||
| 
 Definition at line 89 of file probabilisticregressiontree.h. | 
| 
 | ||||||||||
| 
 Definition at line 101 of file probabilisticregressiontree.h. | 
| 
 | ||||||||||
| Use the training data to learn a new structure. 
 Reimplemented from CLUS::Machine. Definition at line 136 of file probabilisticregressiontree.h. | 
| 
 | ||||||||||
| Get the number of input dimensions. 
 Reimplemented from CLUS::Machine. Definition at line 107 of file probabilisticregressiontree.h. | 
| 
 | ||||||||||
| Do the inference. 
 Reimplemented from CLUS::Machine. Definition at line 117 of file probabilisticregressiontree.h. | 
| 
 | ||||||||||
| 
 | ||||||||||
| Prune the structure. 
 Reimplemented from CLUS::Machine. Definition at line 182 of file probabilisticregressiontree.h. | 
| 
 | ||||||||||
| Output the structure data to a stream. 
 
 Reimplemented from CLUS::Machine. Definition at line 231 of file probabilisticregressiontree.h. | 
| 
 | ||||||||||||||||
| Set an option for the machine. 
 
 Reimplemented from CLUS::Machine. Definition at line 210 of file probabilisticregressiontree.h. | 
| 
 | ||||||||||
| Get the type of this object. 
 
 Reimplemented from CLUS::Machine. Definition at line 112 of file probabilisticregressiontree.h. Referenced by CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::SaveToStream(). | 
| 
 | |||||
| 
 | |||||
| 
 | |||||
| 
 | |||||
| num of iterations to get convergence for EM 
 Definition at line 66 of file probabilisticregressiontree.h. Referenced by CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::BinaryProbabilisticRegressionTree(), CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Identify(), and CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::SetOption(). | 
| 
 | |||||
| num of restarts of EM to get a good initial starting point 
 Definition at line 69 of file probabilisticregressiontree.h. Referenced by CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::BinaryProbabilisticRegressionTree(), CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Identify(), and CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::SetOption(). | 
| 
 | |||||
| 
 | |||||
| the minimum number of datapoints in a node to split further 
 Definition at line 72 of file probabilisticregressiontree.h. Referenced by CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::BinaryProbabilisticRegressionTree(), CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Identify(), and CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::SetOption(). | 
| 
 | |||||
| 
 | |||||
| 
 | |||||
| 
 | |||||
| type of split to be passed to splitter, splitter dependent 
 Definition at line 75 of file probabilisticregressiontree.h. Referenced by CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::BinaryProbabilisticRegressionTree(), CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::Identify(), and CLUS::BinaryProbabilisticRegressionTree< T_Distribution, T_Regressor, T_Splitter >::SetOption(). | 
 1.3.2
 
1.3.2