Main Page | Namespace List | Class Hierarchy | Data Structures | File List | Namespace Members | Data Fields | Globals | Related Pages

CLUS::BinaryProbabilisticDecisionTree< T_Splitter > Class Template Reference

#include <binaryprobabilisticdecisiontree.h>

Inheritance diagram for CLUS::BinaryProbabilisticDecisionTree< T_Splitter >:

Inheritance graph
[legend]
Collaboration diagram for CLUS::BinaryProbabilisticDecisionTree< T_Splitter >:

Collaboration graph
[legend]

Public Member Functions

 BinaryProbabilisticDecisionTree (const Vector< int > &DDomainSize, int CsplitDim)
 ~BinaryProbabilisticDecisionTree (void)
virtual int InDim (void)
 Get the number of input dimensions.

virtual string TypeName (void)
 Get the type of this object.

virtual void Infer (void)
 Do the inference.

virtual void Identify (void)
 Use the training data to learn a new structure.

virtual void Prune (void)
 Prune the structure.

virtual int SetOption (char *name, char *val)
 Set an option for the machine.

virtual void SaveToStream (ostream &out)
 Output the structure data to a stream.


Protected Attributes

BinaryProbabilisticDecisionTreeNode<
T_Splitter > * 
root
const Vector< int > & dDomainSize
 vector of discrete domain sizes

int dsplitDim
 number of discrete split variables

int csplitDim
 number of continuous split variables

double minMass
 the minimum mass (sum of weights) to continue splitting

double threshold
 the minimum value of the probability to belong to a partition to be considered

bool bootstrapping
 do we do bootstrapping

int bootstrappingRepetitions
 number of repetitions for bootstrapping

template<class T_Splitter>
class CLUS::BinaryProbabilisticDecisionTree< T_Splitter >


Constructor & Destructor Documentation

template<class T_Splitter>
CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::BinaryProbabilisticDecisionTree const Vector< int > &  DDomainSize,
int  CsplitDim
[inline]
 

Definition at line 75 of file binaryprobabilisticdecisiontree.h.

template<class T_Splitter>
CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::~BinaryProbabilisticDecisionTree void   )  [inline]
 

Definition at line 88 of file binaryprobabilisticdecisiontree.h.


Member Function Documentation

template<class T_Splitter>
virtual void CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Identify void   )  [inline, virtual]
 

Use the training data to learn a new structure.

Reimplemented from CLUS::Machine.

Definition at line 144 of file binaryprobabilisticdecisiontree.h.

template<class T_Splitter>
virtual int CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::InDim void   )  [inline, virtual]
 

Get the number of input dimensions.

Reimplemented from CLUS::Machine.

Definition at line 94 of file binaryprobabilisticdecisiontree.h.

template<class T_Splitter>
virtual void CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Infer void   )  [inline, virtual]
 

Do the inference.

Reimplemented from CLUS::Machine.

Definition at line 104 of file binaryprobabilisticdecisiontree.h.

template<class T_Splitter>
virtual void CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Prune void   )  [inline, virtual]
 

Prune the structure.

Reimplemented from CLUS::Machine.

Definition at line 171 of file binaryprobabilisticdecisiontree.h.

template<class T_Splitter>
virtual void CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::SaveToStream ostream &  out  )  [inline, virtual]
 

Output the structure data to a stream.

Parameters:
out stream for output

Reimplemented from CLUS::Machine.

Definition at line 205 of file binaryprobabilisticdecisiontree.h.

template<class T_Splitter>
virtual int CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::SetOption char *  name,
char *  val
[inline, virtual]
 

Set an option for the machine.

Parameters:
name name of option to be set
val value of option

Reimplemented from CLUS::Machine.

Definition at line 193 of file binaryprobabilisticdecisiontree.h.

template<class T_Splitter>
virtual string CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::TypeName void   )  [inline, virtual]
 

Get the type of this object.

Returns:
name of object type as a string

Reimplemented from CLUS::Machine.

Definition at line 99 of file binaryprobabilisticdecisiontree.h.

Referenced by CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::SaveToStream().


Field Documentation

template<class T_Splitter>
bool CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::bootstrapping [protected]
 

do we do bootstrapping

Definition at line 69 of file binaryprobabilisticdecisiontree.h.

Referenced by CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::BinaryProbabilisticDecisionTree().

template<class T_Splitter>
int CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::bootstrappingRepetitions [protected]
 

number of repetitions for bootstrapping

Definition at line 72 of file binaryprobabilisticdecisiontree.h.

Referenced by CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::BinaryProbabilisticDecisionTree().

template<class T_Splitter>
int CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::csplitDim [protected]
 

number of continuous split variables

Definition at line 60 of file binaryprobabilisticdecisiontree.h.

Referenced by CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::BinaryProbabilisticDecisionTree(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Identify(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::InDim(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Infer(), and CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::SaveToStream().

template<class T_Splitter>
const Vector<int>& CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::dDomainSize [protected]
 

vector of discrete domain sizes

Definition at line 54 of file binaryprobabilisticdecisiontree.h.

Referenced by CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::BinaryProbabilisticDecisionTree(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Identify(), and CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::SaveToStream().

template<class T_Splitter>
int CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::dsplitDim [protected]
 

number of discrete split variables

Definition at line 57 of file binaryprobabilisticdecisiontree.h.

Referenced by CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::BinaryProbabilisticDecisionTree(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Identify(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::InDim(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Infer(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Prune(), and CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::SaveToStream().

template<class T_Splitter>
double CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::minMass [protected]
 

the minimum mass (sum of weights) to continue splitting

Definition at line 63 of file binaryprobabilisticdecisiontree.h.

Referenced by CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::BinaryProbabilisticDecisionTree(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Identify(), and CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::SetOption().

template<class T_Splitter>
BinaryProbabilisticDecisionTreeNode< T_Splitter >* CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::root [protected]
 

Definition at line 51 of file binaryprobabilisticdecisiontree.h.

Referenced by CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::BinaryProbabilisticDecisionTree(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Identify(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Infer(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Prune(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::SaveToStream(), and CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::~BinaryProbabilisticDecisionTree().

template<class T_Splitter>
double CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::threshold [protected]
 

the minimum value of the probability to belong to a partition to be considered

Definition at line 66 of file binaryprobabilisticdecisiontree.h.

Referenced by CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::BinaryProbabilisticDecisionTree(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Identify(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Infer(), CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::Prune(), and CLUS::BinaryProbabilisticDecisionTree< T_Splitter >::SetOption().


The documentation for this class was generated from the following file:
Generated on Mon Jul 21 16:57:45 2003 for SECRET by doxygen 1.3.2