#include <multidecisiontreenode.h>
Collaboration diagram for CLUS::MultiDecisionTreeNode< T_Splitter >:

Public Member Functions | |
| MultiDecisionTreeNode (MultiDecisionTreeNode< T_Splitter > *Parent, int NodeId, const Vector< int > &DDomainSize, int CsplitDim, int NoDatasets, DiscretePermutationTransformation &discreteTransformer, ContinuousLinearTransformation &continuousTransformer) | |
| ~MultiDecisionTreeNode (void) | |
| void | StartLearningEpoch (void) |
| void | LearnSample (const int *Dvars, const double *Cvars, int classlabel, int datasetNo) |
| bool | FindSplitAttributes (list< int > &attList) |
| If the node is in splitting stage find the split attribute and if it has no shift add attribute to the attList. | |
| double | ComputeTotalWeight (void) |
| double | computeSumOfVarianceInverted (int attribute, int dataSetIndex) |
| sums 1/v_n, for the subtree with this as root, where v_n is the variance of the split point for attribute, as computed at node n | |
| double | combineSplits (int attribute, int dataSetIndex, double *sumInvVars) |
| Combines shifts for attribute for subtree with this as root. Note: needs to be normalized. | |
| double | combineLabeledCenters (int attribute, int dataSetIndex, double *sumInvVars) |
| bool | labeledMeansSignificant (int attribute, int dataSetIndex) |
| bool | negMeanLessThanPos (int attribute, int dataSetIndex) |
| double | combineCenters (int attribute, int dataSetIndex, double *sumInvVars) |
| void | AddDiscreteShiftStatistics (int SplitAttribute, Vector< BinomialStatistics > &statistics) |
| void | AddContinuousShiftStatistics (int SplitAttribute, Vector< NormalStatistics > &statistics) |
| bool | StopLearningEpoch (int splitType, int min_no_datapoints) |
| |
| Permutation | ComputeDiscreteShift (bool label, int attribute, int datasetIndex) |
| double | Infer (const int *Dvars, const double *Cvars) |
| Does the inference. | |
| void | InitializePruningStatistics (void) |
| void | UpdatePruningStatistics (const int *Dvars, const double *Cvars, int classlabel, int datasetNo) |
| void | FinalizePruningStatistics (void) |
| double | PruneSubtree (void) |
| Returns the optimal cost for this subtree and cuts the subtree to optimal size. | |
| void | SaveToStream (ostream &out) |
Private Types | |
| enum | state { stable, split } |
| the state of the node. At creation em. At load stable More... | |
Private Member Functions | |
| double | ComputePruningCost (void) |
| double | ComputeNodeWeight (void) |
Private Attributes | |
| int | nodeId |
| unique identifier of the cluster for a regression tree. | |
| enum CLUS::MultiDecisionTreeNode::state | State |
| the state of the node. At creation em. At load stable | |
| MultiDecisionTreeNode< T_Splitter > * | Children [2] |
| the children of this node | |
| MultiDecisionTreeNode< T_Splitter > * | parent |
| the children of this node | |
| int | classLabel |
| the predicted class labels for each of the trees | |
| T_Splitter | Splitter |
| splitter for split criterion | |
| Vector< int > | pruningMistakes |
| statistics for pruning. | |
| Vector< int > | pruningSamples |
| number of samples in this node for pruning | |
|
|||||
|
the state of the node. At creation em. At load stable
Definition at line 56 of file multidecisiontreenode.h. |
|
||||||||||||||||||||||||||||||||||||
|
Definition at line 98 of file multidecisiontreenode.h. |
|
||||||||||
|
Definition at line 113 of file multidecisiontreenode.h. |
|
||||||||||||||||
|
Definition at line 341 of file multidecisiontreenode.h. |
|
||||||||||||||||
|
Definition at line 330 of file multidecisiontreenode.h. |
|
||||||||||||||||||||
|
Definition at line 301 of file multidecisiontreenode.h. |
|
||||||||||||||||||||
|
Definition at line 262 of file multidecisiontreenode.h. |
|
||||||||||||||||||||
|
Combines shifts for attribute for subtree with this as root. Note: needs to be normalized.
Definition at line 235 of file multidecisiontreenode.h. |
|
||||||||||||||||||||
|
Definition at line 398 of file multidecisiontreenode.h. |
|
||||||||||
|
Definition at line 88 of file multidecisiontreenode.h. Referenced by CLUS::MultiDecisionTreeNode< T_Splitter >::AddContinuousShiftStatistics(), CLUS::MultiDecisionTreeNode< T_Splitter >::AddDiscreteShiftStatistics(), and CLUS::MultiDecisionTreeNode< T_Splitter >::ComputeTotalWeight(). |
|
||||||||||
|
Definition at line 74 of file multidecisiontreenode.h. Referenced by CLUS::MultiDecisionTreeNode< T_Splitter >::PruneSubtree(). |
|
||||||||||||||||
|
sums 1/v_n, for the subtree with this as root, where v_n is the variance of the split point for attribute, as computed at node n
Definition at line 217 of file multidecisiontreenode.h. |
|
||||||||||
|
Definition at line 206 of file multidecisiontreenode.h. |
|
||||||||||
|
Definition at line 441 of file multidecisiontreenode.h. |
|
||||||||||
|
If the node is in splitting stage find the split attribute and if it has no shift add attribute to the attList.
Definition at line 163 of file multidecisiontreenode.h. |
|
||||||||||||||||
|
Does the inference.
Definition at line 406 of file multidecisiontreenode.h. |
|
||||||||||
|
Definition at line 420 of file multidecisiontreenode.h. |
|
||||||||||||||||
|
Definition at line 291 of file multidecisiontreenode.h. |
|
||||||||||||||||||||||||
|
Definition at line 141 of file multidecisiontreenode.h. |
|
||||||||||||||||
|
Definition at line 296 of file multidecisiontreenode.h. |
|
||||||||||
|
Returns the optimal cost for this subtree and cuts the subtree to optimal size.
Definition at line 447 of file multidecisiontreenode.h. |
|
||||||||||
|
Definition at line 478 of file multidecisiontreenode.h. |
|
||||||||||
|
Definition at line 124 of file multidecisiontreenode.h. |
|
||||||||||||||||
|
Definition at line 353 of file multidecisiontreenode.h. |
|
||||||||||||||||||||||||
|
Definition at line 431 of file multidecisiontreenode.h. |
|
|||||
|
|||||
|
the predicted class labels for each of the trees
Definition at line 62 of file multidecisiontreenode.h. Referenced by CLUS::MultiDecisionTreeNode< T_Splitter >::FindSplitAttributes(), CLUS::MultiDecisionTreeNode< T_Splitter >::Infer(), CLUS::MultiDecisionTreeNode< T_Splitter >::StopLearningEpoch(), and CLUS::MultiDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
|||||
|
unique identifier of the cluster for a regression tree.
Definition at line 53 of file multidecisiontreenode.h. Referenced by CLUS::MultiDecisionTreeNode< T_Splitter >::MultiDecisionTreeNode(), CLUS::MultiDecisionTreeNode< T_Splitter >::SaveToStream(), and CLUS::MultiDecisionTreeNode< T_Splitter >::StopLearningEpoch(). |
|
|||||
|
the children of this node
Definition at line 59 of file multidecisiontreenode.h. Referenced by CLUS::MultiDecisionTreeNode< T_Splitter >::MultiDecisionTreeNode(). |
|
|||||
|
statistics for pruning. Individual statistics are maintained for each dataset sum of squared differences between prediction and true value Definition at line 69 of file multidecisiontreenode.h. Referenced by CLUS::MultiDecisionTreeNode< T_Splitter >::ComputePruningCost(), CLUS::MultiDecisionTreeNode< T_Splitter >::InitializePruningStatistics(), CLUS::MultiDecisionTreeNode< T_Splitter >::MultiDecisionTreeNode(), and CLUS::MultiDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
|||||
|
number of samples in this node for pruning
Definition at line 72 of file multidecisiontreenode.h. Referenced by CLUS::MultiDecisionTreeNode< T_Splitter >::ComputePruningCost(), CLUS::MultiDecisionTreeNode< T_Splitter >::InitializePruningStatistics(), CLUS::MultiDecisionTreeNode< T_Splitter >::MultiDecisionTreeNode(), and CLUS::MultiDecisionTreeNode< T_Splitter >::UpdatePruningStatistics(). |
|
|||||
|
|||||
1.3.2