00001 /* 00002 00003 Copyright (c) 2003, Cornell University 00004 All rights reserved. 00005 00006 Redistribution and use in source and binary forms, with or without 00007 modification, are permitted provided that the following conditions are met: 00008 00009 - Redistributions of source code must retain the above copyright notice, 00010 this list of conditions and the following disclaimer. 00011 - Redistributions in binary form must reproduce the above copyright 00012 notice, this list of conditions and the following disclaimer in the 00013 documentation and/or other materials provided with the distribution. 00014 - Neither the name of Cornell University nor the names of its 00015 contributors may be used to endorse or promote products derived from 00016 this software without specific prior written permission. 00017 00018 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00019 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00020 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00021 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 00022 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00023 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 00024 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 00025 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 00026 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 00027 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 00028 THE POSSIBILITY OF SUCH DAMAGE. 00029 00030 */ 00031 00032 // -*- C++ -*- 00033 00034 #ifndef _DCTRAINGEN_H 00035 #define _DCTRAINGEN_H 00036 00037 #include "traingen.h" 00038 00039 namespace CLUS 00040 { 00041 00042 /** Ancestor of all Training Data generators that can manipulate both discrete and continuous 00043 entries. Used by decision and regression trees. 00044 */ 00045 class DCTrainingData : public TrainingData 00046 { 00047 protected: 00048 00049 /// the table with the discrete part of the training data 00050 Matrix<int> DTable; 00051 00052 /// list of discrete domain sizes 00053 Vector<int> dDomainSize; 00054 public: 00055 DCTrainingData( int M, int Ddims, int Cdims, Vector<int>& DDomainSize ) : 00056 TrainingData(M,Cdims), DTable(M,Ddims), dDomainSize(DDomainSize) 00057 { } 00058 00059 /** Required for the discrete part. Equivalent to the normalization for continuous variables */ 00060 virtual const Vector<int>& GetDDomainSizes(void) 00061 { 00062 return dDomainSize; 00063 } 00064 00065 virtual Vector<int> domainSizes() 00066 { 00067 return dDomainSize; 00068 } 00069 00070 virtual int NumDiscreteCols(void) 00071 { 00072 return DTable.num_cols(); 00073 } 00074 00075 virtual const Matrix<int>& GetDiscreteTrainingData(void) 00076 { 00077 return DTable; 00078 } 00079 00080 }; 00081 } 00082 00083 #endif // _DCTRAINGEN_H